{ "id": "1005.1050", "version": "v5", "published": "2010-05-06T17:39:39.000Z", "updated": "2010-12-31T16:39:01.000Z", "title": "Real analytic approximation of Lipschitz functions on Hilbert space and other Banach spaces", "authors": [ "D. Azagra", "R. Fry", "L. Keener" ], "comment": "Updated version with a sharper result in the Hilbertian case. One thin tube is enough. Some misprints corrected", "categories": [ "math.FA" ], "abstract": "Let $X$ be a separable Banach space with a separating polynomial. We show that there exists $C\\geq 1$ (depending only on $X$) such that for every Lipschitz function $f:X\\rightarrow\\mathbb{R}$, and every $\\epsilon>0$, there exists a Lipschitz, real analytic function $g:X\\rightarrow\\mathbb{R}$ such that $|f(x)-g(x)|\\leq \\epsilon$ and $\\textrm{Lip}(g)\\leq C\\textrm{Lip}(f)$. This result is new even in the case when $X$ is a Hilbert space. Furthermore, in the Hilbertian case we also show that $C$ can be assumed to be any number greater than 1.", "revisions": [ { "version": "v5", "updated": "2010-12-31T16:39:01.000Z" } ], "analyses": { "subjects": [ "46B20" ], "keywords": [ "real analytic approximation", "hilbert space", "lipschitz function", "real analytic function", "separable banach space" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2010arXiv1005.1050A" } } }