arXiv Analytics

Sign in

arXiv:1004.3678 [cond-mat.mes-hall]AbstractReferencesReviewsResources

Peierls-type Instability and Tunable Band Gap in Functionalized Graphene

D. A. Abanin, A. V. Shytov, L. S. Levitov

Published 2010-04-21, updated 2010-08-10Version 2

Functionalizing graphene was recently shown to have a dramatic effect on the electronic properties of this material. Here we investigate spatial ordering of adatoms driven by the RKKY-type interactions. In the ordered state, which arises via a Peierls-instability-type mechanism, the adatoms reside mainly on one of the two graphene sublattices. Bragg scattering of electron waves induced by sublattice symmetry breaking results in a band gap opening, whereby Dirac fermions acquire a finite mass. The band gap is found to be immune to the adatoms' positional disorder, with only an exponentially small number of localized states residing in the gap. The gapped state is stabilized in a wide range of electron doping. Our findings show that controlled adsorption of adatoms or molecules provides a route to engineering a tunable band gap in graphene.

Related articles: Most relevant | Search more
arXiv:1001.5213 [cond-mat.mes-hall] (Published 2010-01-28)
Electrical observation of a tunable band gap in bilayer graphene nanoribbons at room temperature
arXiv:1211.1336 [cond-mat.mes-hall] (Published 2012-11-06)
Optical Signatures of the Tunable Band Gap and Valley-Spin Coupling in Silicene
arXiv:1008.1424 [cond-mat.mes-hall] (Published 2010-08-08)
Spatial Ordering of Defects and Conductivity of Functionalized Graphene