arXiv:1004.3188 [math.DG]AbstractReferencesReviewsResources
Isoperimetric Inequalities for Minimal Submanifolds in Riemannian Manifolds: A Counterexample in Higher Codimension
Published 2010-04-19, updated 2010-12-23Version 3
For compact Riemannian manifolds with convex boundary, B.White proved the following alternative: Either there is an isoperimetric inequality for minimal hypersurfaces or there exists a closed minimal hypersurface, possibly with a small singular set. There is the natural question if a similar result is true for submanifolds of higher codimension. Specifically, B.White asked if the non-existence of an isoperimetric inequality for k-varifolds implies the existence of a nonzero, stationary, integral k-varifold. We present examples showing that this is not true in codimension greater than two. The key step is the construction of a Riemannian metric on the closed four-dimensional ball B with the following properties: (1) B has strictly convex boundary. (2) There exists a complete nonconstant geodesic. (3) There does not exist a closed geodesic in B.