arXiv Analytics

Sign in

arXiv:1004.2614 [math.AG]AbstractReferencesReviewsResources

Higher secant varieties of $\mathbb{P}^n \times \mathbb{P}^m$ embedded in bi-degree $(1,d)$

Alessandra Bernardi, Enrico Carlini, Maria Virginia Catalisano

Published 2010-04-15Version 1

Let $X^{(n,m)}_{(1,d)}$ denote the Segre-Veronese embedding of $\mathbb{P}^n \times \mathbb{P}^m$ via the sections of the sheaf $\mathcal{O}(1,d)$. We study the dimensions of higher secant varieties of $X^{(n,m)}_{(1,d)}$ and we prove that there is no defective $s^{th}$ secant variety, except possibly for $n$ values of $s$. Moreover when ${m+d \choose d}$ is multiple of $(m+n+1)$, the $s^{th}$ secant variety of $X^{(n,m)}_{(1,d)}$ has the expected dimension for every $s$.

Comments: 8 pages
Journal: J. Pure Appl. Algebra. 215, (2011), pp. 2853-2858
Categories: math.AG
Related articles: Most relevant | Search more
arXiv:math/0005202 [math.AG] (Published 2000-05-22)
Grassmannians of secant varieties
arXiv:0809.1701 [math.AG] (Published 2008-09-10)
Secant Varieties of (P ^1) X .... X (P ^1) (n-times) are NOT Defective for n \geq 5
arXiv:2410.00652 [math.AG] (Published 2024-10-01)
On the prime ideals of higher secant varieties of Veronese embeddings of small degrees