{ "id": "1004.2614", "version": "v1", "published": "2010-04-15T12:02:04.000Z", "updated": "2010-04-15T12:02:04.000Z", "title": "Higher secant varieties of $\\mathbb{P}^n \\times \\mathbb{P}^m$ embedded in bi-degree $(1,d)$", "authors": [ "Alessandra Bernardi", "Enrico Carlini", "Maria Virginia Catalisano" ], "comment": "8 pages", "journal": "J. Pure Appl. Algebra. 215, (2011), pp. 2853-2858", "doi": "10.1016/j.jpaa.2011.04.005", "categories": [ "math.AG" ], "abstract": "Let $X^{(n,m)}_{(1,d)}$ denote the Segre-Veronese embedding of $\\mathbb{P}^n \\times \\mathbb{P}^m$ via the sections of the sheaf $\\mathcal{O}(1,d)$. We study the dimensions of higher secant varieties of $X^{(n,m)}_{(1,d)}$ and we prove that there is no defective $s^{th}$ secant variety, except possibly for $n$ values of $s$. Moreover when ${m+d \\choose d}$ is multiple of $(m+n+1)$, the $s^{th}$ secant variety of $X^{(n,m)}_{(1,d)}$ has the expected dimension for every $s$.", "revisions": [ { "version": "v1", "updated": "2010-04-15T12:02:04.000Z" } ], "analyses": { "keywords": [ "higher secant varieties", "secant variety", "segre-veronese", "expected dimension" ], "tags": [ "journal article" ], "note": { "typesetting": "TeX", "pages": 8, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2010arXiv1004.2614B" } } }