arXiv Analytics

Sign in

arXiv:1003.5174 [math.DS]AbstractReferencesReviewsResources

Variations of Hausdorff Dimension in the Exponential Family

Guillaume Havard, Mariusz Urbanski, Michel Zinsmeister

Published 2010-03-26Version 1

In this paper we deal with the following family of exponential maps $(f_\lambda:z\mapsto \lambda(e^z-1))_{\lambda\in [1,+\infty)}$. Denoting $d(\lambda)$ the hyperbolic dimension of $f_\lambda$. It is known that the function $\lambda\mapsto d(\lambda)$ is real analytic in $(1,+\infty)$, and that it is continuous in $[1,+\infty)$. In this paper we prove that this map is C$^1$ on $[1,+\infty)$, with $d'(1^+)=0$. Moreover, depending on the value of $d(1)$, we give estimates of the speed of convergence towards 0.

Comments: 32 pages. A para\^itre dans Annales Academi{\ae} Scientiarum Fennic{\ae} Mathematica
Categories: math.DS
Related articles: Most relevant | Search more
arXiv:1009.0468 [math.DS] (Published 2010-09-02)
Geometric renormalisation and Hausdorff dimension for loop-approximable geodesics escaping to infinity
arXiv:1006.4498 [math.DS] (Published 2010-06-23)
On Hausdorff dimension of the set of closed orbits for a cylindrical transformation
arXiv:1404.2308 [math.DS] (Published 2014-04-08)
On the Hausdorff dimension of Newhouse phenomena