{ "id": "1003.5174", "version": "v1", "published": "2010-03-26T16:06:40.000Z", "updated": "2010-03-26T16:06:40.000Z", "title": "Variations of Hausdorff Dimension in the Exponential Family", "authors": [ "Guillaume Havard", "Mariusz Urbanski", "Michel Zinsmeister" ], "comment": "32 pages. A para\\^itre dans Annales Academi{\\ae} Scientiarum Fennic{\\ae} Mathematica", "categories": [ "math.DS" ], "abstract": "In this paper we deal with the following family of exponential maps $(f_\\lambda:z\\mapsto \\lambda(e^z-1))_{\\lambda\\in [1,+\\infty)}$. Denoting $d(\\lambda)$ the hyperbolic dimension of $f_\\lambda$. It is known that the function $\\lambda\\mapsto d(\\lambda)$ is real analytic in $(1,+\\infty)$, and that it is continuous in $[1,+\\infty)$. In this paper we prove that this map is C$^1$ on $[1,+\\infty)$, with $d'(1^+)=0$. Moreover, depending on the value of $d(1)$, we give estimates of the speed of convergence towards 0.", "revisions": [ { "version": "v1", "updated": "2010-03-26T16:06:40.000Z" } ], "analyses": { "keywords": [ "hausdorff dimension", "exponential family", "variations", "exponential maps" ], "note": { "typesetting": "TeX", "pages": 32, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2010arXiv1003.5174H" } } }