arXiv Analytics

Sign in

arXiv:1003.4454 [math.AP]AbstractReferencesReviewsResources

A Dissipative Model for Hydrogen Storage: Existence and Regularity Results

Elisabetta Chiodaroli

Published 2010-03-23, updated 2010-03-24Version 2

We prove global existence of a solution to an initial and boundary value problem for a highly nonlinear PDE system. The problem arises from a thermomechanical dissipative model describing hydrogen storage by use of metal hydrides. In order to treat the model from an analytical point of view, we formulate it as a phase transition phenomenon thanks to the introduction of a suitable phase variable. Continuum mechanics laws lead to an evolutionary problem involving three state variables: the temperature, the phase parameter and the pressure. The problem thus consists of three coupled partial differential equations combined with initial and boundary conditions. Existence and regularity of the solutions are here investigated by means of a time discretization-a priori estimates-passage to the limit procedure joined with compactness and monotonicity arguments.

Related articles: Most relevant | Search more
arXiv:1203.6519 [math.AP] (Published 2012-03-29)
Boundary value problem of a non-stationary Stokes system in a bounded smooth cylinder
arXiv:1002.4978 [math.AP] (Published 2010-02-26)
Boundary Value Problems with Measures for Elliptic Equations with Singular Potentials
arXiv:1810.01410 [math.AP] (Published 2018-10-01)
Perturbed Lane-Emden equations as a boundary value problem with singular endpoints