arXiv:1002.3319 [math.FA]AbstractReferencesReviewsResources
Riesz transform characterization of H^1 spaces associated with certain Laguerre expansions
Published 2010-02-17, updated 2011-11-26Version 3
For alpha>0 we consider the system l_k^{(alpha-1)/2}(x) of the Laguerre functions which are eigenfunctions of the differential operator Lf =-\frac{d^2}{dx^2}f-\frac{alpha}{x}\frac{d}{dx}f+x^2 f. We define an atomic Hardy space H^1_{at}(X), which is a subspace of L^1((0,infty), x^alpha dx). Then we prove that the space H^1_{at}(X) is also characterized by the Riesz transform Rf=\sqrt{\pi}\frac{d}{dx}L^{-1/2}f in the sense that f\in H^1_{at}(X) if and only if f,Rf \in L^1((0,infty),x^alpha dx).
Categories: math.FA
Keywords: riesz transform characterization, laguerre expansions, atomic hardy space, differential operator lf
Tags: journal article
Related articles: Most relevant | Search more
arXiv:2106.00748 [math.FA] (Published 2021-06-01)
Riesz transform characterizations for multidimensional Hardy spaces
arXiv:2004.14434 [math.FA] (Published 2020-04-29)
The atomic Hardy space for a general Bessel operator
arXiv:0910.1017 [math.FA] (Published 2009-10-06)
Riesz transform characterization of Hardy spaces associated with Schrödinger operators with compactly supported potentials