{ "id": "1002.3319", "version": "v3", "published": "2010-02-17T17:27:42.000Z", "updated": "2011-11-26T12:14:20.000Z", "title": "Riesz transform characterization of H^1 spaces associated with certain Laguerre expansions", "authors": [ "Marcin Preisner" ], "doi": "10.1016/j.jat.2011.10.004", "categories": [ "math.FA" ], "abstract": "For alpha>0 we consider the system l_k^{(alpha-1)/2}(x) of the Laguerre functions which are eigenfunctions of the differential operator Lf =-\\frac{d^2}{dx^2}f-\\frac{alpha}{x}\\frac{d}{dx}f+x^2 f. We define an atomic Hardy space H^1_{at}(X), which is a subspace of L^1((0,infty), x^alpha dx). Then we prove that the space H^1_{at}(X) is also characterized by the Riesz transform Rf=\\sqrt{\\pi}\\frac{d}{dx}L^{-1/2}f in the sense that f\\in H^1_{at}(X) if and only if f,Rf \\in L^1((0,infty),x^alpha dx).", "revisions": [ { "version": "v3", "updated": "2011-11-26T12:14:20.000Z" } ], "analyses": { "subjects": [ "42B30", "42B35", "42B20" ], "keywords": [ "riesz transform characterization", "laguerre expansions", "atomic hardy space", "differential operator lf" ], "tags": [ "journal article" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2010arXiv1002.3319P" } } }