arXiv:1001.1510 [math.FA]AbstractReferencesReviewsResources
Decompositions of Besov-Hausdorff and Triebel-Lizorkin-Hausdorff Spaces and Their Applications
Wen Yuan, Yoshihiro Sawano, Dachun Yang
Published 2010-01-10, updated 2010-04-11Version 2
Let $p\in(1,\infty)$, $q\in[1,\infty)$, $s\in\mathbb{R}$ and $\tau\in[0, 1-\frac{1}{\max\{p,q\}}]$. In this paper, the authors establish the $\varphi$-transform characterizations of Besov-Hausdorff spaces $B{\dot H}_{p,q}^{s,\tau}(\mathbb{R}^n)$ and Triebel-Lizorkin-Hausdorff spaces $F{\dot H}_{p,q}^{s,\tau}(\mathbb{R}^n)$ ($q>1$); as applications, the authors then establish their embedding properties (which on $B{\dot H}_{p,q}^{s,\tau}(\mathbb{R}^n)$ is also sharp), smooth atomic and molecular decomposition characterizations for suitable $\tau$. Moreover, using their atomic and molecular decomposition characterizations, the authors investigate the trace properties and the boundedness of pseudo-differential operators with homogeneous symbols in $B{\dot H}_{p,q}^{s,\tau}(\mathbb{R}^n)$ and $F{\dot H}_{p,q}^{s,\tau}(\mathbb{R}^n)$ ($q>1$), which generalize the corresponding classical results on homogeneous Besov and Triebel-Lizorkin spaces when $p\in(1,\infty)$ and $q\in[1,\infty)$ by taking $\tau=0$.