{ "id": "1001.1510", "version": "v2", "published": "2010-01-10T12:52:21.000Z", "updated": "2010-04-11T09:26:41.000Z", "title": "Decompositions of Besov-Hausdorff and Triebel-Lizorkin-Hausdorff Spaces and Their Applications", "authors": [ "Wen Yuan", "Yoshihiro Sawano", "Dachun Yang" ], "comment": "30 pages, J. Math. Anal. Appl. (to appear).", "categories": [ "math.FA", "math.CA" ], "abstract": "Let $p\\in(1,\\infty)$, $q\\in[1,\\infty)$, $s\\in\\mathbb{R}$ and $\\tau\\in[0, 1-\\frac{1}{\\max\\{p,q\\}}]$. In this paper, the authors establish the $\\varphi$-transform characterizations of Besov-Hausdorff spaces $B{\\dot H}_{p,q}^{s,\\tau}(\\mathbb{R}^n)$ and Triebel-Lizorkin-Hausdorff spaces $F{\\dot H}_{p,q}^{s,\\tau}(\\mathbb{R}^n)$ ($q>1$); as applications, the authors then establish their embedding properties (which on $B{\\dot H}_{p,q}^{s,\\tau}(\\mathbb{R}^n)$ is also sharp), smooth atomic and molecular decomposition characterizations for suitable $\\tau$. Moreover, using their atomic and molecular decomposition characterizations, the authors investigate the trace properties and the boundedness of pseudo-differential operators with homogeneous symbols in $B{\\dot H}_{p,q}^{s,\\tau}(\\mathbb{R}^n)$ and $F{\\dot H}_{p,q}^{s,\\tau}(\\mathbb{R}^n)$ ($q>1$), which generalize the corresponding classical results on homogeneous Besov and Triebel-Lizorkin spaces when $p\\in(1,\\infty)$ and $q\\in[1,\\infty)$ by taking $\\tau=0$.", "revisions": [ { "version": "v2", "updated": "2010-04-11T09:26:41.000Z" } ], "analyses": { "subjects": [ "46E35", "42C40", "47G30" ], "keywords": [ "triebel-lizorkin-hausdorff spaces", "molecular decomposition characterizations", "applications", "pseudo-differential operators", "besov-hausdorff spaces" ], "note": { "typesetting": "TeX", "pages": 30, "language": "en", "license": "arXiv", "status": "editable" } } }