arXiv:0910.5278 [math.DS]AbstractReferencesReviewsResources
On the geometry of Julia sets
Published 2009-10-28Version 1
We show that the Julia set of quadratic maps with parameters in hyperbolic components of the Mandelbrot set is given by a transseries formula, rapidly convergent at any repelling periodic point. Up to conformal transformations, we obtain $J$ from a smoother curve of lower Hausdorff dimension, by replacing pieces of the more regular curve by increasingly rescaled elementary "bricks" obtained from the transseries expression. Self-similarity of $J$, up to conformal transformation, is manifest in the formulas. The Hausdorff dimension of $J$ is estimated by the transseries formula. The analysis extends to polynomial maps.
Categories: math.DS
Related articles: Most relevant | Search more
Dynamical properties and structure of Julia sets of postcritically bounded polynomial semigroups
Brushing the hairs of transcendental entire functions
arXiv:1708.02819 [math.DS] (Published 2017-08-09)
Lebesgue measure of Julia sets and escaping sets of certain entire functions