{ "id": "0910.5278", "version": "v1", "published": "2009-10-28T02:13:29.000Z", "updated": "2009-10-28T02:13:29.000Z", "title": "On the geometry of Julia sets", "authors": [ "O. Costin", "M. Huang" ], "categories": [ "math.DS" ], "abstract": "We show that the Julia set of quadratic maps with parameters in hyperbolic components of the Mandelbrot set is given by a transseries formula, rapidly convergent at any repelling periodic point. Up to conformal transformations, we obtain $J$ from a smoother curve of lower Hausdorff dimension, by replacing pieces of the more regular curve by increasingly rescaled elementary \"bricks\" obtained from the transseries expression. Self-similarity of $J$, up to conformal transformation, is manifest in the formulas. The Hausdorff dimension of $J$ is estimated by the transseries formula. The analysis extends to polynomial maps.", "revisions": [ { "version": "v1", "updated": "2009-10-28T02:13:29.000Z" } ], "analyses": { "subjects": [ "37F10", "37F45", "37F50", "30D05", "28A80" ], "keywords": [ "julia set", "conformal transformation", "transseries formula", "lower hausdorff dimension", "transseries expression" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2009arXiv0910.5278C" } } }