arXiv:0910.3586 [cond-mat.mes-hall]AbstractReferencesReviewsResources
Friction force on slow charges moving over supported graphene
Published 2009-10-19Version 1
We provide a theoretical model that describes the dielectric coupling of a 2D layer of graphene, represented by a polarization function in the Random Phase Approximation, and a semi-infinite 3D substrate, represented by a surface response function in a non-local formulation. We concentrate on the role of the dynamic response of the substrate for low-frequency excitations of the combined graphene-substrate system, which give rise to the stopping force on slowly moving charges above graphene. A comparison of the dielectric loss function with experimental HREELS data for graphene on a SiC substrate is used to estimate the damping rate in graphene and to reveal the importance of phonon excitations in an insulating substrate. A signature of the hybridization between graphene's pi plasmon and the substrate's phonon is found in the stopping force. A friction coefficient that is calculated for slow charges moving above graphene on a metallic substrate shows an interplay between the low-energy single-particle excitations in both systems.