arXiv Analytics

Sign in

arXiv:0910.0067 [math.PR]AbstractReferencesReviewsResources

On the Borel-Cantelli Lemma and its Generalization

Chunrong Feng, Liangpan Li, Jian Shen

Published 2009-10-01Version 1

Let $\{A_n\}_{n=1}^{\infty}$ be a sequence of events on a probability space $(\Omega,\mathcal{F},\mathbf{P})$. We show that if $\lim_{m\to\infty}\sum_{n=1}^{m}w_n\mathbf{P}(A_n)=\infty$ where each $w_n\in\mathbb{R}$, then \[{\mathbf{P}}(\limsup A_n)\geq\limsup_{n\to\infty} \frac{\displaystyle\big(\sum_{k=1}^n{w_k\mathbf{P}}(A_k)\big)^2}{\displaystyle\sum_{i=1}^n\sum_{j=1}^nw_iw_j{\mathbf{P}}(A_i\cap A_j)}.\]

Comments: 5 Pages
Categories: math.PR
Subjects: 60C05
Related articles: Most relevant | Search more
arXiv:2010.02452 [math.PR] (Published 2020-10-06)
Nonstandard Representation of the Dirichlet Form
arXiv:math/0611878 [math.PR] (Published 2006-11-28)
A Generalization and Extension of an Autoregressive Model
arXiv:1408.3755 [math.PR] (Published 2014-08-16)
On lower and upper bounds for probabilities of unions and the Borel--Cantelli lemma