{ "id": "0910.0067", "version": "v1", "published": "2009-10-01T01:53:10.000Z", "updated": "2009-10-01T01:53:10.000Z", "title": "On the Borel-Cantelli Lemma and its Generalization", "authors": [ "Chunrong Feng", "Liangpan Li", "Jian Shen" ], "comment": "5 Pages", "categories": [ "math.PR" ], "abstract": "Let $\\{A_n\\}_{n=1}^{\\infty}$ be a sequence of events on a probability space $(\\Omega,\\mathcal{F},\\mathbf{P})$. We show that if $\\lim_{m\\to\\infty}\\sum_{n=1}^{m}w_n\\mathbf{P}(A_n)=\\infty$ where each $w_n\\in\\mathbb{R}$, then \\[{\\mathbf{P}}(\\limsup A_n)\\geq\\limsup_{n\\to\\infty} \\frac{\\displaystyle\\big(\\sum_{k=1}^n{w_k\\mathbf{P}}(A_k)\\big)^2}{\\displaystyle\\sum_{i=1}^n\\sum_{j=1}^nw_iw_j{\\mathbf{P}}(A_i\\cap A_j)}.\\]", "revisions": [ { "version": "v1", "updated": "2009-10-01T01:53:10.000Z" } ], "analyses": { "subjects": [ "60C05" ], "keywords": [ "borel-cantelli lemma", "generalization" ], "note": { "typesetting": "TeX", "pages": 5, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2009arXiv0910.0067F" } } }