arXiv:0909.2387 [math.NT]AbstractReferencesReviewsResources
On the transcendence of some infinite sums
Published 2009-09-13Version 1
In this paper we investigate the infinite convergent sum $T=\sum_{n=0}^\infty\frac{P(n)}{Q(n)}$, where $P(x)\in\bar{\mathbb{Q}}[x]$, $Q(x)\in\mathbb{Q}[x]$ and $Q(x)$ has only simple rational zeros. N. Saradha and R. Tijdeman have obtained sufficient and necessary conditions for the transcendence of $T$ if the degree of $Q(x)$ is 3. In this paper we give sufficient and necessary conditions for the transcendence of $T$ if the degree of $Q(x)$ is 4 and $Q(x)$ is reduced.
Comments: 15pages
DOI: 10.1112/jlms/jdp029
Categories: math.NT
Keywords: infinite sums, transcendence, necessary conditions, infinite convergent sum, simple rational zeros
Tags: journal article
Related articles: Most relevant | Search more
On the possible exceptions for the transcendence of the log-gamma function at rational entries
arXiv:2005.01211 [math.NT] (Published 2020-05-03)
Transcendence of $πr$ or $\wp(ω_1 r)$
arXiv:0806.1694 [math.NT] (Published 2008-06-10)
Transcendence of the Gaussian Liouville number and relatives