arXiv Analytics

Sign in

arXiv:0907.2870 [math.NT]AbstractReferencesReviewsResources

On the least common multiple of $q$-binomial coefficients

Victor J. W. Guo

Published 2009-07-16Version 1

In this paper, we prove the following identity $$ \lcm({n\brack 0}_q,{n\brack 1}_q,...,{n\brack n}_q) =\frac{\lcm([1]_q,[2]_q,...,[n+1]_q)}{[n+1]_q}, $$ where ${n\brack k}_q$ denotes the $q$-binomial coefficient and $[n]_q=\frac{1-q^n}{1-q}$. This result is a $q$-analogue of an identity of Farhi [Amer. Math. Monthly, November (2009)].

Comments: 5 pages
Journal: Integers 10 (2010), 351--356
Categories: math.NT, math.CO
Subjects: 11A07, 05A30
Related articles: Most relevant | Search more
arXiv:1209.2373 [math.NT] (Published 2012-09-07, updated 2014-05-01)
A characterization of a prime $p$ from the binomial coefficient ${n \choose p}$
arXiv:1607.02564 [math.NT] (Published 2016-07-09)
A base-$b$ extension of the binomial coefficient
arXiv:1906.07652 [math.NT] (Published 2019-06-16)
On the divisibility of binomial coefficients