{ "id": "0907.2870", "version": "v1", "published": "2009-07-16T15:34:57.000Z", "updated": "2009-07-16T15:34:57.000Z", "title": "On the least common multiple of $q$-binomial coefficients", "authors": [ "Victor J. W. Guo" ], "comment": "5 pages", "journal": "Integers 10 (2010), 351--356", "doi": "10.1515/INTEG.2010.029", "categories": [ "math.NT", "math.CO" ], "abstract": "In this paper, we prove the following identity $$ \\lcm({n\\brack 0}_q,{n\\brack 1}_q,...,{n\\brack n}_q) =\\frac{\\lcm([1]_q,[2]_q,...,[n+1]_q)}{[n+1]_q}, $$ where ${n\\brack k}_q$ denotes the $q$-binomial coefficient and $[n]_q=\\frac{1-q^n}{1-q}$. This result is a $q$-analogue of an identity of Farhi [Amer. Math. Monthly, November (2009)].", "revisions": [ { "version": "v1", "updated": "2009-07-16T15:34:57.000Z" } ], "analyses": { "subjects": [ "11A07", "05A30" ], "keywords": [ "binomial coefficient", "common multiple" ], "tags": [ "journal article" ], "note": { "typesetting": "TeX", "pages": 5, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2009arXiv0907.2870G" } } }