arXiv Analytics

Sign in

arXiv:0907.2035 [math.PR]AbstractReferencesReviewsResources

Numerical scheme for backward doubly stochastic differential equations

Auguste Aman

Published 2009-07-12Version 1

We study a discrete-time approximation for solutions of systems of decoupled forward-backward doubly stochastic differential equations (FBDSDEs). Assuming that the coefficients are Lipschitz-continuous, we prove the convergence of the scheme when the step of time discretization, $|\pi|$ goes to zero. The rate of convergence is exactly equal to $|\pi|^{1/2}$. The proof is based on a generalization of a remarkable result on the $^{2}$-regularity of the solution of the backward equation derived by J. Zhang

Related articles: Most relevant | Search more
arXiv:math/0310210 [math.PR] (Published 2003-10-15, updated 2006-02-09)
The harmonic explorer and its convergence to SLE(4)
arXiv:1101.1810 [math.PR] (Published 2011-01-10, updated 2013-11-06)
Convergence in law of the minimum of a branching random walk
arXiv:1103.1426 [math.PR] (Published 2011-03-08, updated 2011-11-01)
Convergence of random series and the rate of convergence of the strong law of large numbers in game-theoretic probability