arXiv:0906.5529 [math.DG]AbstractReferencesReviewsResources
On stability of the hyperbolic space form under the normalized Ricci flow
Published 2009-06-30Version 1
This paper studies the normalized Ricci flow from a slight perturbation of the hyperbolic metric on $\mathbb H^n$. It's proved that if the perturbation is small and decays sufficiently fast at the infinity, then the flow will converge exponentially fast to the hyperbolic metric when the dimension $n>5$.
Comments: 17 pages
Subjects: 53C44
Related articles: Most relevant | Search more
arXiv:0807.2169 [math.DG] (Published 2008-07-14)
The Normalized Ricci Flow on Four-Manifolds and Exotic Smooth Structures
arXiv:1305.0440 [math.DG] (Published 2013-05-02)
The Ricci flow on generalized Wallach spaces
arXiv:1411.5814 [math.DG] (Published 2014-11-21)
On topological structure of some sets related to the normalized Ricci flow on generalized Wallach spaces