{ "id": "0906.5529", "version": "v1", "published": "2009-06-30T14:07:14.000Z", "updated": "2009-06-30T14:07:14.000Z", "title": "On stability of the hyperbolic space form under the normalized Ricci flow", "authors": [ "Haozhao Li", "Hao Yin" ], "comment": "17 pages", "categories": [ "math.DG", "math.AP" ], "abstract": "This paper studies the normalized Ricci flow from a slight perturbation of the hyperbolic metric on $\\mathbb H^n$. It's proved that if the perturbation is small and decays sufficiently fast at the infinity, then the flow will converge exponentially fast to the hyperbolic metric when the dimension $n>5$.", "revisions": [ { "version": "v1", "updated": "2009-06-30T14:07:14.000Z" } ], "analyses": { "subjects": [ "53C44" ], "keywords": [ "normalized ricci flow", "hyperbolic space form", "hyperbolic metric", "paper studies", "slight perturbation" ], "note": { "typesetting": "TeX", "pages": 17, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2009arXiv0906.5529L" } } }