arXiv:0906.4626 [math.NT]AbstractReferencesReviewsResources
The genus fields of Artin-Schreier extensions
Published 2009-06-25, updated 2009-12-27Version 2
Let $q$ be a power of a prime number $p$. Let $k=\mathbb{F}_{q}(t)$ be the rational function field with constant field $\mathbb{F}_{q}$. Let $K=k(\alpha)$ be an Artin-Schreier extension of $k$. In this paper, we explicitly describe the ambiguous ideal classes and the genus field of $K$ . Using these results we study the $p$-part of the ideal class group of the integral closure of $\mathbb{F}_{q}[t]$ in $K$. And we also give an analogy of R$\acute{e}$dei-Reichardt's formulae for $K$.
Related articles: Most relevant | Search more
arXiv:1512.08264 [math.NT] (Published 2015-12-27)
Genus Fields of Congruence Function Fields
arXiv:2006.11870 [math.NT] (Published 2020-06-21)
Genus fields of Kummer $\ell^n$-cyclic extensions
arXiv:0706.2735 [math.NT] (Published 2007-06-19)
Sums of $L$-functions over the rational function field