{ "id": "0906.4626", "version": "v2", "published": "2009-06-25T08:26:40.000Z", "updated": "2009-12-27T15:11:59.000Z", "title": "The genus fields of Artin-Schreier extensions", "authors": [ "Su Hu", "Yan Li" ], "comment": "9 pages, Corrected typos", "categories": [ "math.NT" ], "abstract": "Let $q$ be a power of a prime number $p$. Let $k=\\mathbb{F}_{q}(t)$ be the rational function field with constant field $\\mathbb{F}_{q}$. Let $K=k(\\alpha)$ be an Artin-Schreier extension of $k$. In this paper, we explicitly describe the ambiguous ideal classes and the genus field of $K$ . Using these results we study the $p$-part of the ideal class group of the integral closure of $\\mathbb{F}_{q}[t]$ in $K$. And we also give an analogy of R$\\acute{e}$dei-Reichardt's formulae for $K$.", "revisions": [ { "version": "v2", "updated": "2009-12-27T15:11:59.000Z" } ], "analyses": { "subjects": [ "11R58" ], "keywords": [ "genus field", "artin-schreier extension", "ideal class group", "rational function field", "dei-reichardts formulae" ], "note": { "typesetting": "TeX", "pages": 9, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2009arXiv0906.4626H" } } }