arXiv Analytics

Sign in

arXiv:0906.3836 [math.DG]AbstractReferencesReviewsResources

An example of asymptotically Chow unstable manifolds with constant scalar curvature

Hajime Ono, Yuji Sano, Naoto Yotsutani

Published 2009-06-20, updated 2012-12-18Version 2

Donaldson proved that if a polarized manifold $(V,L)$ has constant scalar curvature K\"ahler metrics in $c_1(L)$ and its automorphism group Aut$(M,L)$ is discrete, $(V,L)$ is asymptotically Chow stable. In this paper, we shall show an example which implies that the above result does not hold in the case when Aut$(V,L)$ is not discrete.

Comments: 17 pages
Journal: Annales de l'Institut Fourier, Grenoble, 62, 4(2012), 1265-1287
Categories: math.DG, math.AG
Subjects: 53C55
Related articles: Most relevant | Search more
arXiv:math/0412405 [math.DG] (Published 2004-12-20, updated 2005-04-14)
Construction of Kaehler surfaces with constant scalar curvature
arXiv:math/0411271 [math.DG] (Published 2004-11-11, updated 2005-02-21)
A remark on Kähler metrics of constant scalar curvature on ruled complex surfaces
arXiv:0902.0861 [math.DG] (Published 2009-02-05)
On the existence of Kähler metrics of constant scalar curvature