{ "id": "0906.3836", "version": "v2", "published": "2009-06-20T23:48:19.000Z", "updated": "2012-12-18T02:33:31.000Z", "title": "An example of asymptotically Chow unstable manifolds with constant scalar curvature", "authors": [ "Hajime Ono", "Yuji Sano", "Naoto Yotsutani" ], "comment": "17 pages", "journal": "Annales de l'Institut Fourier, Grenoble, 62, 4(2012), 1265-1287", "categories": [ "math.DG", "math.AG" ], "abstract": "Donaldson proved that if a polarized manifold $(V,L)$ has constant scalar curvature K\\\"ahler metrics in $c_1(L)$ and its automorphism group Aut$(M,L)$ is discrete, $(V,L)$ is asymptotically Chow stable. In this paper, we shall show an example which implies that the above result does not hold in the case when Aut$(V,L)$ is not discrete.", "revisions": [ { "version": "v2", "updated": "2012-12-18T02:33:31.000Z" } ], "analyses": { "subjects": [ "53C55" ], "keywords": [ "constant scalar curvature", "asymptotically chow unstable manifolds", "automorphism group aut" ], "tags": [ "journal article" ], "note": { "typesetting": "TeX", "pages": 17, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2009arXiv0906.3836O" } } }