arXiv Analytics

Sign in

arXiv:0906.2989 [math.FA]AbstractReferencesReviewsResources

Smooth extensions of functions on separable Banach spaces

D. Azagra, R. Fry, L. Keener

Published 2009-06-16, updated 2010-01-28Version 2

Let $X$ be a Banach space with a separable dual $X^{*}$. Let $Y\subset X$ be a closed subspace, and $f:Y\to\mathbb{R}$ a $C^{1}$-smooth function. Then we show there is a $C^{1}$ extension of $f$ to $X$.

Comments: 19 pages. This version fixes a gap in the previous proof of Theorem 1 by providing a sharp version of Lemma 1
Categories: math.FA
Subjects: 46B20
Related articles: Most relevant | Search more
arXiv:1308.4429 [math.FA] (Published 2013-08-20)
On explicit constructions of auerbach bases in separable Banach spaces
arXiv:1105.6046 [math.FA] (Published 2011-05-30, updated 2012-08-21)
Smooth approximations of norms in separable Banach spaces
arXiv:2207.02555 [math.FA] (Published 2022-07-06)
Asymptotic smoothness and universality in Banach spaces