{ "id": "0906.2989", "version": "v2", "published": "2009-06-16T18:04:27.000Z", "updated": "2010-01-28T09:39:05.000Z", "title": "Smooth extensions of functions on separable Banach spaces", "authors": [ "D. Azagra", "R. Fry", "L. Keener" ], "comment": "19 pages. This version fixes a gap in the previous proof of Theorem 1 by providing a sharp version of Lemma 1", "categories": [ "math.FA" ], "abstract": "Let $X$ be a Banach space with a separable dual $X^{*}$. Let $Y\\subset X$ be a closed subspace, and $f:Y\\to\\mathbb{R}$ a $C^{1}$-smooth function. Then we show there is a $C^{1}$ extension of $f$ to $X$.", "revisions": [ { "version": "v2", "updated": "2010-01-28T09:39:05.000Z" } ], "analyses": { "subjects": [ "46B20" ], "keywords": [ "separable banach spaces", "smooth extensions", "smooth function" ], "note": { "typesetting": "TeX", "pages": 19, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2009arXiv0906.2989A" } } }