arXiv Analytics

Sign in

arXiv:0905.2358 [math.AP]AbstractReferencesReviewsResources

Multiple positive solutions for a Schrödinger-Poisson-Slater system

Gaetano Siciliano

Published 2009-05-14, updated 2009-06-22Version 2

In this paper we investigate the existence of positive solutions to the following Schr\"odinger-Poisson-Slater system [c]{ll} - \Delta u+ u + \lambda\phi u=|u|^{p-2}u & \text{in} \Omega -\Delta\phi= u^{2} & \text{in} \Omega u=\phi=0 & \text{on} \partial\Omega. where $\Omega$ is a bounded domain in $\mathbf{R}^{3},\lambda$ is a fixed positive parameter and $p<2^{*}=\frac{2N}{N-2}$. We prove that if $p$ is "near" the critical Sobolev exponent $2^*$, then the number of positive solutions is greater then the Ljusternik-Schnirelmann category of $\Omega$.

Related articles: Most relevant | Search more
arXiv:1610.09328 [math.AP] (Published 2016-10-28)
Positive solutions for the fractional Laplacian in the almost critical case in a bounded domain
arXiv:1702.04327 [math.AP] (Published 2017-02-14)
The Biot-Savart operator of a bounded domain
arXiv:1301.4282 [math.AP] (Published 2013-01-18)
Approximate Deconvolution Model in a bounded domain with a vertical regularization