{ "id": "0905.2358", "version": "v2", "published": "2009-05-14T15:48:00.000Z", "updated": "2009-06-22T09:21:06.000Z", "title": "Multiple positive solutions for a Schrödinger-Poisson-Slater system", "authors": [ "Gaetano Siciliano" ], "comment": "added references and improved the result", "categories": [ "math.AP" ], "abstract": "In this paper we investigate the existence of positive solutions to the following Schr\\\"odinger-Poisson-Slater system [c]{ll} - \\Delta u+ u + \\lambda\\phi u=|u|^{p-2}u & \\text{in} \\Omega -\\Delta\\phi= u^{2} & \\text{in} \\Omega u=\\phi=0 & \\text{on} \\partial\\Omega. where $\\Omega$ is a bounded domain in $\\mathbf{R}^{3},\\lambda$ is a fixed positive parameter and $p<2^{*}=\\frac{2N}{N-2}$. We prove that if $p$ is \"near\" the critical Sobolev exponent $2^*$, then the number of positive solutions is greater then the Ljusternik-Schnirelmann category of $\\Omega$.", "revisions": [ { "version": "v2", "updated": "2009-06-22T09:21:06.000Z" } ], "analyses": { "subjects": [ "35J50", "55M30", "74G35" ], "keywords": [ "multiple positive solutions", "schrödinger-poisson-slater system", "critical sobolev exponent", "ljusternik-schnirelmann category", "bounded domain" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2009arXiv0905.2358S" } } }