arXiv:0904.4091 [math.PR]AbstractReferencesReviewsResources
Some asymptotic properties of the spectrum of the Jacobi ensemble
Published 2009-04-27Version 1
For the random eigenvalues with density corresponding to the Jacobi ensemble $$c \cdot \prod_{i < j} | \lambda_i - \lambda_j |^\beta \prod^n_{i=1} (2 - \lambda_i)^a (2 + \lambda_i)^b I_{(-2,2)} (\lambda_i) $$ $(a, b > -1, \beta > 0) $ a strong uniform approximation by the roots of the Jacobi polynomials is derived if the parameters $a, b,$ $\beta$ depend on $n$ and $n \to \infty$. Roughly speaking, the eigenvalues can be uniformly approximated by roots of Jacobi polynomials with parameters $((2a+2)/\beta -1, (2b+2)/\beta-1)$, where the error is of order $\{\log n/(a+b) \}^{1/4}$. These results are used to investigate the asymptotic properties of the corresponding spectral distribution if $n \to \infty$ and the parameters $a, b$ and $\beta$ vary with $n$. We also discuss further applications in the context of multivariate random $F$-matrices.