{ "id": "0904.4091", "version": "v1", "published": "2009-04-27T06:30:55.000Z", "updated": "2009-04-27T06:30:55.000Z", "title": "Some asymptotic properties of the spectrum of the Jacobi ensemble", "authors": [ "Holger Dette", "Jan Nagel" ], "comment": "20 pages, 2 figures", "categories": [ "math.PR" ], "abstract": "For the random eigenvalues with density corresponding to the Jacobi ensemble $$c \\cdot \\prod_{i < j} | \\lambda_i - \\lambda_j |^\\beta \\prod^n_{i=1} (2 - \\lambda_i)^a (2 + \\lambda_i)^b I_{(-2,2)} (\\lambda_i) $$ $(a, b > -1, \\beta > 0) $ a strong uniform approximation by the roots of the Jacobi polynomials is derived if the parameters $a, b,$ $\\beta$ depend on $n$ and $n \\to \\infty$. Roughly speaking, the eigenvalues can be uniformly approximated by roots of Jacobi polynomials with parameters $((2a+2)/\\beta -1, (2b+2)/\\beta-1)$, where the error is of order $\\{\\log n/(a+b) \\}^{1/4}$. These results are used to investigate the asymptotic properties of the corresponding spectral distribution if $n \\to \\infty$ and the parameters $a, b$ and $\\beta$ vary with $n$. We also discuss further applications in the context of multivariate random $F$-matrices.", "revisions": [ { "version": "v1", "updated": "2009-04-27T06:30:55.000Z" } ], "analyses": { "subjects": [ "60F15", "15A52" ], "keywords": [ "asymptotic properties", "jacobi ensemble", "jacobi polynomials", "strong uniform approximation", "parameters" ], "note": { "typesetting": "TeX", "pages": 20, "language": "en", "license": "arXiv", "status": "editable" } } }