arXiv:0904.2530 [math.NT]AbstractReferencesReviewsResources
Congruences of the partition function
Published 2009-04-16Version 1
Let $p(n)$ denote the partition function. In this article, we will show that congruences of the form $$ p(m^j\ell^kn+B)\equiv 0\mod m \text{for all} n\ge 0 $$ exist for all primes $m$ and $\ell$ satisfying $m\ge 13$ and $\ell\neq 2,3,m$. Here the integer $k$ depends on the Hecke eigenvalues of a certain invariant subspace of $S_{m/2-1}(\Gamma_0(576),\chi_{12})$ and can be explicitly computed. More generally, we will show that for each integer $i>0$ there exists an integer $k$ such that for every non-negative integers $j\ge i$ with a properly chosen $B$ the congruence $$ p(m^j\ell^kn+B)\equiv 0\mod m^i $$ holds for all integers $n$ not divisible by $\ell$.
Comments: 19 pages
Categories: math.NT
Related articles: Most relevant | Search more
arXiv:1602.02407 [math.NT] (Published 2016-02-07)
On the congruence ${1^n + 2^n + \dotsb + n^n\equiv p \pmod{n}}$
arXiv:1912.12754 [math.NT] (Published 2019-12-29)
On the occurrence of Hecke eigenvalues in sectors
arXiv:1810.02014 [math.NT] (Published 2018-10-04)
Bounds on the multiplicity of the Hecke eigenvalues