{ "id": "0904.2530", "version": "v1", "published": "2009-04-16T16:00:24.000Z", "updated": "2009-04-16T16:00:24.000Z", "title": "Congruences of the partition function", "authors": [ "Yifan Yang" ], "comment": "19 pages", "categories": [ "math.NT" ], "abstract": "Let $p(n)$ denote the partition function. In this article, we will show that congruences of the form $$ p(m^j\\ell^kn+B)\\equiv 0\\mod m \\text{for all} n\\ge 0 $$ exist for all primes $m$ and $\\ell$ satisfying $m\\ge 13$ and $\\ell\\neq 2,3,m$. Here the integer $k$ depends on the Hecke eigenvalues of a certain invariant subspace of $S_{m/2-1}(\\Gamma_0(576),\\chi_{12})$ and can be explicitly computed. More generally, we will show that for each integer $i>0$ there exists an integer $k$ such that for every non-negative integers $j\\ge i$ with a properly chosen $B$ the congruence $$ p(m^j\\ell^kn+B)\\equiv 0\\mod m^i $$ holds for all integers $n$ not divisible by $\\ell$.", "revisions": [ { "version": "v1", "updated": "2009-04-16T16:00:24.000Z" } ], "analyses": { "subjects": [ "11P83", "11F25", "11F37", "11P82" ], "keywords": [ "partition function", "congruence", "hecke eigenvalues", "invariant subspace" ], "note": { "typesetting": "TeX", "pages": 19, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2009arXiv0904.2530Y" } } }