arXiv Analytics

Sign in

arXiv:0904.2196 [math.AP]AbstractReferencesReviewsResources

Ill-posedness of basic equations of fluid dynamics in Besov spaces

A. Cheskidov, R. Shvydkoy

Published 2009-04-14Version 1

We give a construction of a divergence-free vector field $u_0 \in H^s \cap B^{-1}_{\infty,\infty}$, for all $s<1/2$, such that any Leray-Hopf solution to the Navier-Stokes equation starting from $u_0$ is discontinuous at $t=0$ in the metric of $B^{-1}_{\infty,\infty}$. For the Euler equation a similar result is proved in all Besov spaces $B^s_{r,\infty}$ where $s>0$ if $r>2$, and $s>n(2/r-1)$ if $1 \leq r \leq 2$.

Related articles: Most relevant | Search more
arXiv:2106.00540 [math.AP] (Published 2021-06-01)
Ill-posedness for the higher dimensional Camassa-Holm equations in Besov spaces
arXiv:math/0703883 [math.AP] (Published 2007-03-29)
Blow-up criterion of strong solutions to the Navier-Stokes equations in Besov spaces with negative indices
arXiv:2104.06408 [math.AP] (Published 2021-04-13)
Ill-posedness for the Euler equations in Besov spaces