{ "id": "0904.2196", "version": "v1", "published": "2009-04-14T20:14:46.000Z", "updated": "2009-04-14T20:14:46.000Z", "title": "Ill-posedness of basic equations of fluid dynamics in Besov spaces", "authors": [ "A. Cheskidov", "R. Shvydkoy" ], "comment": "9 pages", "categories": [ "math.AP" ], "abstract": "We give a construction of a divergence-free vector field $u_0 \\in H^s \\cap B^{-1}_{\\infty,\\infty}$, for all $s<1/2$, such that any Leray-Hopf solution to the Navier-Stokes equation starting from $u_0$ is discontinuous at $t=0$ in the metric of $B^{-1}_{\\infty,\\infty}$. For the Euler equation a similar result is proved in all Besov spaces $B^s_{r,\\infty}$ where $s>0$ if $r>2$, and $s>n(2/r-1)$ if $1 \\leq r \\leq 2$.", "revisions": [ { "version": "v1", "updated": "2009-04-14T20:14:46.000Z" } ], "analyses": { "subjects": [ "76D03", "35Q30" ], "keywords": [ "besov spaces", "fluid dynamics", "basic equations", "ill-posedness", "divergence-free vector field" ], "note": { "typesetting": "TeX", "pages": 9, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2009arXiv0904.2196C" } } }