arXiv Analytics

Sign in

arXiv:0903.2508 [math.CO]AbstractReferencesReviewsResources

Distribution of determinant of matrices with restricted entries over finite fields

Le Anh Vinh

Published 2009-03-13Version 1

For a prime power $q$, we study the distribution of determinent of matrices with restricted entries over a finite field $\mathbbm{F}_q$ of $q$ elements. More precisely, let $N_d (\mathcal{A}; t)$ be the number of $d \times d$ matrices with entries in $\mathcal{A}$ having determinant $t$. We show that \[ N_d (\mathcal{A}; t) = (1 + o (1)) \frac{|\mathcal{A}|^{d^2}}{q}, \] if $|\mathcal{A}| = \omega(q^{\frac{d}{2d-1}})$, $d\geqslant 4$. When $q$ is a prime and $\mathcal{A}$ is a symmetric interval $[-H,H]$, we get the same result for $d\geqslant 3$. This improves a result of Ahmadi and Shparlinski (2007).

Comments: Journal of Combinatorics and Number Theory (to appear)
Categories: math.CO, math.NT
Subjects: 11C20, 11T23
Related articles: Most relevant | Search more
arXiv:1904.07847 [math.CO] (Published 2019-04-16)
Distribution of determinant of sum of matrices
arXiv:1003.1984 [math.CO] (Published 2010-03-09)
On the Polya permanent problem over finite fields
arXiv:1309.0087 [math.CO] (Published 2013-08-31, updated 2014-02-15)
On the determinant of hexagonal grids $H_{k,n}$