{ "id": "0903.2508", "version": "v1", "published": "2009-03-13T22:19:57.000Z", "updated": "2009-03-13T22:19:57.000Z", "title": "Distribution of determinant of matrices with restricted entries over finite fields", "authors": [ "Le Anh Vinh" ], "comment": "Journal of Combinatorics and Number Theory (to appear)", "categories": [ "math.CO", "math.NT" ], "abstract": "For a prime power $q$, we study the distribution of determinent of matrices with restricted entries over a finite field $\\mathbbm{F}_q$ of $q$ elements. More precisely, let $N_d (\\mathcal{A}; t)$ be the number of $d \\times d$ matrices with entries in $\\mathcal{A}$ having determinant $t$. We show that \\[ N_d (\\mathcal{A}; t) = (1 + o (1)) \\frac{|\\mathcal{A}|^{d^2}}{q}, \\] if $|\\mathcal{A}| = \\omega(q^{\\frac{d}{2d-1}})$, $d\\geqslant 4$. When $q$ is a prime and $\\mathcal{A}$ is a symmetric interval $[-H,H]$, we get the same result for $d\\geqslant 3$. This improves a result of Ahmadi and Shparlinski (2007).", "revisions": [ { "version": "v1", "updated": "2009-03-13T22:19:57.000Z" } ], "analyses": { "subjects": [ "11C20", "11T23" ], "keywords": [ "finite field", "restricted entries", "distribution", "determinant", "prime power" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2009arXiv0903.2508V" } } }