arXiv Analytics

Sign in

arXiv:0903.1413 [math.RT]AbstractReferencesReviewsResources

Multiplicity one theorems: the Archimedean case

Binyong Sun, Chen-Bo Zhu

Published 2009-03-08, updated 2011-06-17Version 2

Let $G$ be one of the classical Lie groups $\GL_{n+1}(\R)$, $\GL_{n+1}(\C)$, $\oU(p,q+1)$, $\oO(p,q+1)$, $\oO_{n+1}(\C)$, $\SO(p,q+1)$, $\SO_{n+1}(\C)$, and let $G'$ be respectively the subgroup $\GL_{n}(\R)$, $\GL_{n}(\C)$, $\oU(p,q)$, $\oO(p,q)$, $\oO_n(\C)$, $\SO(p,q)$, $\SO_n(\C)$, embedded in $G$ in the standard way. We show that every irreducible Casselman-Wallach representation of $G'$ occurs with multiplicity at most one in every irreducible Casselman-Wallach representation of $G$. Similar results are proved for the Jacobi groups $\GL_{n}(\R)\ltimes \oH_{2n+1}(\R)$, $\GL_{n}(\C)\ltimes \oH_{2n+1}(\C)$, $\oU(p,q)\ltimes \oH_{2p+2q+1}(\R)$, $\Sp_{2n}(\R)\ltimes \oH_{2n+1}(\R)$, $\Sp_{2n}(\C)\ltimes \oH_{2n+1}(\C)$, with their respective subgroups $\GL_{n}(\R)$, $\GL_{n}(\C)$, $\oU(p,q)$, $\Sp_{2n}(\R)$, $\Sp_{2n}(\C)$.

Comments: To appear in Annals of Mathematics
Journal: Ann. of Math. (2) 175 (2012), no. 1, 23-44
Categories: math.RT
Subjects: 22E30, 22E46
Related articles: Most relevant | Search more
arXiv:1209.3075 [math.RT] (Published 2012-09-14)
Uniqueness of Fourier-Jacobi models: the Archimedean case
arXiv:2409.09320 [math.RT] (Published 2024-09-14)
Multiplicity One Theorem for General Spin Groups: The Archimedean Case
arXiv:0908.1728 [math.RT] (Published 2009-08-12, updated 2009-12-01)
Uniqueness of Bessel models: the archimedean case