{ "id": "0903.1413", "version": "v2", "published": "2009-03-08T13:06:53.000Z", "updated": "2011-06-17T13:16:51.000Z", "title": "Multiplicity one theorems: the Archimedean case", "authors": [ "Binyong Sun", "Chen-Bo Zhu" ], "comment": "To appear in Annals of Mathematics", "journal": "Ann. of Math. (2) 175 (2012), no. 1, 23-44", "doi": "10.4007/annals.2012.175.1.2", "categories": [ "math.RT" ], "abstract": "Let $G$ be one of the classical Lie groups $\\GL_{n+1}(\\R)$, $\\GL_{n+1}(\\C)$, $\\oU(p,q+1)$, $\\oO(p,q+1)$, $\\oO_{n+1}(\\C)$, $\\SO(p,q+1)$, $\\SO_{n+1}(\\C)$, and let $G'$ be respectively the subgroup $\\GL_{n}(\\R)$, $\\GL_{n}(\\C)$, $\\oU(p,q)$, $\\oO(p,q)$, $\\oO_n(\\C)$, $\\SO(p,q)$, $\\SO_n(\\C)$, embedded in $G$ in the standard way. We show that every irreducible Casselman-Wallach representation of $G'$ occurs with multiplicity at most one in every irreducible Casselman-Wallach representation of $G$. Similar results are proved for the Jacobi groups $\\GL_{n}(\\R)\\ltimes \\oH_{2n+1}(\\R)$, $\\GL_{n}(\\C)\\ltimes \\oH_{2n+1}(\\C)$, $\\oU(p,q)\\ltimes \\oH_{2p+2q+1}(\\R)$, $\\Sp_{2n}(\\R)\\ltimes \\oH_{2n+1}(\\R)$, $\\Sp_{2n}(\\C)\\ltimes \\oH_{2n+1}(\\C)$, with their respective subgroups $\\GL_{n}(\\R)$, $\\GL_{n}(\\C)$, $\\oU(p,q)$, $\\Sp_{2n}(\\R)$, $\\Sp_{2n}(\\C)$.", "revisions": [ { "version": "v2", "updated": "2011-06-17T13:16:51.000Z" } ], "analyses": { "subjects": [ "22E30", "22E46" ], "keywords": [ "archimedean case", "multiplicity", "irreducible casselman-wallach representation", "jacobi groups", "classical lie groups" ], "tags": [ "journal article" ], "publication": { "publisher": "Princeton University and the Institute for Advanced Study", "journal": "Ann. Math." }, "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2009arXiv0903.1413S" } } }