arXiv Analytics

Sign in

arXiv:0903.1411 [math.RT]AbstractReferencesReviewsResources

Uniqueness of Ginzburg-Rallis models: the Archimedean case

Dihua Jiang, Binyong Sun, Chen-Bo Zhu

Published 2009-03-08, updated 2009-12-23Version 2

In this paper, we prove the uniqueness of Ginzburg-Rallis models in the archimedean case. As a key ingredient, we introduce a new descent argument based on two geometric notions attached to submanifolds, which we call metrical properness and unipotent $\chi$-incompatibility.

Journal: Trans. Amer. Math. Soc. 363 (2011), 2763-2802
Categories: math.RT
Subjects: 22E46, 11F70
Related articles: Most relevant | Search more
arXiv:0903.1413 [math.RT] (Published 2009-03-08, updated 2011-06-17)
Multiplicity one theorems: the Archimedean case
arXiv:0908.1728 [math.RT] (Published 2009-08-12, updated 2009-12-01)
Uniqueness of Bessel models: the archimedean case
arXiv:1209.3075 [math.RT] (Published 2012-09-14)
Uniqueness of Fourier-Jacobi models: the Archimedean case