arXiv Analytics

Sign in

arXiv:0902.2444 [math.CO]AbstractReferencesReviewsResources

A combinatorial proof of a formula for Betti numbers of a stacked polytope

Suyoung Choi, Jang Soo Kim

Published 2009-02-14Version 1

For a simplicial complex $\Delta$, the graded Betti number $\beta_{i,j}(k[\Delta])$ of the Stanley-Reisner ring $k[\Delta]$ over a field $k$ has a combinatorial interpretation due to Hochster. Terai and Hibi showed that if $\Delta$ is the boundary complex of a $d$-dimensional stacked polytope with $n$ vertices for $d\geq3$, then $\beta_{k-1,k}(k[\Delta])=(k-1)\binom{n-d}{k}$. We prove this combinatorially.

Comments: 7 pages
Journal: Electron. J. Combin., 17(1), #R9, 2010
Categories: math.CO, math.AC
Subjects: 05A15, 52B05
Related articles: Most relevant | Search more
arXiv:1105.1718 [math.CO] (Published 2011-05-09, updated 2013-06-16)
A Combinatorial interpretation of Hofstadter's G-sequence
arXiv:math/0408117 [math.CO] (Published 2004-08-09)
A combinatorial interpretation for a super-Catalan recurrence
arXiv:0801.1097 [math.CO] (Published 2008-01-07, updated 2008-05-29)
A Combinatorial Interpretation for Certain Relatives of the Conolly Sequence