{ "id": "0902.2444", "version": "v1", "published": "2009-02-14T09:29:17.000Z", "updated": "2009-02-14T09:29:17.000Z", "title": "A combinatorial proof of a formula for Betti numbers of a stacked polytope", "authors": [ "Suyoung Choi", "Jang Soo Kim" ], "comment": "7 pages", "journal": "Electron. J. Combin., 17(1), #R9, 2010", "categories": [ "math.CO", "math.AC" ], "abstract": "For a simplicial complex $\\Delta$, the graded Betti number $\\beta_{i,j}(k[\\Delta])$ of the Stanley-Reisner ring $k[\\Delta]$ over a field $k$ has a combinatorial interpretation due to Hochster. Terai and Hibi showed that if $\\Delta$ is the boundary complex of a $d$-dimensional stacked polytope with $n$ vertices for $d\\geq3$, then $\\beta_{k-1,k}(k[\\Delta])=(k-1)\\binom{n-d}{k}$. We prove this combinatorially.", "revisions": [ { "version": "v1", "updated": "2009-02-14T09:29:17.000Z" } ], "analyses": { "subjects": [ "05A15", "52B05" ], "keywords": [ "combinatorial proof", "dimensional stacked polytope", "graded betti number", "combinatorial interpretation", "simplicial complex" ], "tags": [ "journal article" ], "note": { "typesetting": "TeX", "pages": 7, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2009arXiv0902.2444C" } } }