arXiv:0902.1907 [math.RT]AbstractReferencesReviewsResources
Module structure of cells in unequal parameter Hecke algebras
Published 2009-02-11Version 1
A conjecture of C. Bonnaf\'e, M. Geck, L. Iancu, and T. Lam parameterizes Kazhdan-Lusztig left cells for unequal parameter Hecke algebras in type $B_n$ by families of standard domino tableaux of arbitrary rank. Relying on a family of properties outlined by G. Lusztig and the recent work of C. Bonnaf\'e, we verify the conjecture and describe the structure of each cell as a module for the underlying Weyl group.
Related articles: Most relevant | Search more
arXiv:1611.08147 [math.RT] (Published 2016-11-24)
Deformation of $\mathfrak{osp}(2|2)$-Modules of Symbols
arXiv:1606.01891 [math.RT] (Published 2016-06-06)
Module structure on $U(\mathfrak{h})$ for Kac-Moody algebras
arXiv:0803.3335 [math.RT] (Published 2008-03-23)
Knuth Relations for the Hyperoctahedral Groups