{ "id": "0902.1907", "version": "v1", "published": "2009-02-11T14:57:38.000Z", "updated": "2009-02-11T14:57:38.000Z", "title": "Module structure of cells in unequal parameter Hecke algebras", "authors": [ "Thomas Pietraho" ], "comment": "16 pages", "categories": [ "math.RT" ], "abstract": "A conjecture of C. Bonnaf\\'e, M. Geck, L. Iancu, and T. Lam parameterizes Kazhdan-Lusztig left cells for unequal parameter Hecke algebras in type $B_n$ by families of standard domino tableaux of arbitrary rank. Relying on a family of properties outlined by G. Lusztig and the recent work of C. Bonnaf\\'e, we verify the conjecture and describe the structure of each cell as a module for the underlying Weyl group.", "revisions": [ { "version": "v1", "updated": "2009-02-11T14:57:38.000Z" } ], "analyses": { "subjects": [ "20C08" ], "keywords": [ "unequal parameter hecke algebras", "module structure", "lam parameterizes kazhdan-lusztig left cells", "standard domino tableaux", "underlying weyl group" ], "note": { "typesetting": "TeX", "pages": 16, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2009arXiv0902.1907P" } } }