arXiv Analytics

Sign in

arXiv:0902.1826 [math.DG]AbstractReferencesReviewsResources

Invariant Einstein metrics on generalized flag manifolds with two isotropy summands

Andreas Arvanitoyeorgos, Ioannis Chrysikos

Published 2009-02-11Version 1

Let $M=G/K$ be a generalized flag manifold, that is the adjoint orbit of a compact semisimple Lie group $G$. We use the variational approach to find invariant Einstein metrics for all flag manifolds with two isotropy summands. We also determine the nature of these Einstein metrics as critical points of the scalar curvature functional under fixed volume.

Related articles: Most relevant | Search more
arXiv:0904.1690 [math.DG] (Published 2009-04-10, updated 2009-06-13)
Invariant Einstein metrics on flag manifolds with four isotropy summands
arXiv:1006.5294 [math.DG] (Published 2010-06-28)
Complete description of invariant Einstein metrics on the generalized flag manifold $SO(2n)/U(p)\times U(n-p)$
arXiv:1010.3992 [math.DG] (Published 2010-10-19, updated 2012-07-26)
Flag manifolds, symmetric $\fr{t}$-triples and Einstein metrics