{ "id": "0902.1826", "version": "v1", "published": "2009-02-11T09:24:05.000Z", "updated": "2009-02-11T09:24:05.000Z", "title": "Invariant Einstein metrics on generalized flag manifolds with two isotropy summands", "authors": [ "Andreas Arvanitoyeorgos", "Ioannis Chrysikos" ], "categories": [ "math.DG", "math.RT" ], "abstract": "Let $M=G/K$ be a generalized flag manifold, that is the adjoint orbit of a compact semisimple Lie group $G$. We use the variational approach to find invariant Einstein metrics for all flag manifolds with two isotropy summands. We also determine the nature of these Einstein metrics as critical points of the scalar curvature functional under fixed volume.", "revisions": [ { "version": "v1", "updated": "2009-02-11T09:24:05.000Z" } ], "analyses": { "subjects": [ "53C25", "53C30", "22E46" ], "keywords": [ "invariant einstein metrics", "generalized flag manifold", "isotropy summands", "compact semisimple lie group", "scalar curvature functional" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2009arXiv0902.1826A" } } }