arXiv Analytics

Sign in

arXiv:0901.1102 [math.PR]AbstractReferencesReviewsResources

A CLT for the L^{2} modulus of continuity of Brownian local time

Xia Chen, Wenbo Li, Michael B. Marcus, Jay Rosen

Published 2009-01-08Version 1

Let $\{L^{x}_{t} ; (x,t)\in R^{1}\times R^{1}_{+}\}$ denote the local time of Brownian motion and \[ \alpha_{t}:=\int_{-\infty}^{\infty} (L^{x}_{t})^{2} dx . \] Let $\eta=N(0,1)$ be independent of $\alpha_{t}$. For each fixed $t$ \[ {\int_{-\infty}^{\infty} (L^{x+h}_{t}- L^{x}_{t})^{2} dx- 4ht\over h^{3/2}} \stackrel{\mathcal{L}}{\to}({64 \over 3})^{1/2}\sqrt{\alpha_{t}} \eta, \] as $h\rar 0$. Equivalently \[ {\int_{-\infty}^{\infty} (L^{x+1}_{t}- L^{x}_{t})^{2} dx- 4t\over t^{3/4}} \stackrel{\mathcal{L}}{\to}({64 \over 3} )^{1/2}\sqrt{\alpha_{1}} \eta, \] as $t\rar\infty$.

Related articles: Most relevant | Search more
arXiv:1212.6353 [math.PR] (Published 2012-12-27)
Integral with respect to the $G$-Brownian local time
arXiv:0912.2400 [math.PR] (Published 2009-12-12)
Central limit theorem for the modulus of continuity of the Brownian local time in $L^3(\mathbb{R})$
arXiv:1506.07358 [math.PR] (Published 2015-06-24)
A limit theorem for the $L^p$-modulus of continuity of Brownian local time