{ "id": "0901.1102", "version": "v1", "published": "2009-01-08T17:55:28.000Z", "updated": "2009-01-08T17:55:28.000Z", "title": "A CLT for the L^{2} modulus of continuity of Brownian local time", "authors": [ "Xia Chen", "Wenbo Li", "Michael B. Marcus", "Jay Rosen" ], "categories": [ "math.PR" ], "abstract": "Let $\\{L^{x}_{t} ; (x,t)\\in R^{1}\\times R^{1}_{+}\\}$ denote the local time of Brownian motion and \\[ \\alpha_{t}:=\\int_{-\\infty}^{\\infty} (L^{x}_{t})^{2} dx . \\] Let $\\eta=N(0,1)$ be independent of $\\alpha_{t}$. For each fixed $t$ \\[ {\\int_{-\\infty}^{\\infty} (L^{x+h}_{t}- L^{x}_{t})^{2} dx- 4ht\\over h^{3/2}} \\stackrel{\\mathcal{L}}{\\to}({64 \\over 3})^{1/2}\\sqrt{\\alpha_{t}} \\eta, \\] as $h\\rar 0$. Equivalently \\[ {\\int_{-\\infty}^{\\infty} (L^{x+1}_{t}- L^{x}_{t})^{2} dx- 4t\\over t^{3/4}} \\stackrel{\\mathcal{L}}{\\to}({64 \\over 3} )^{1/2}\\sqrt{\\alpha_{1}} \\eta, \\] as $t\\rar\\infty$.", "revisions": [ { "version": "v1", "updated": "2009-01-08T17:55:28.000Z" } ], "analyses": { "keywords": [ "brownian local time", "continuity", "brownian motion" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }